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ABSTRACT 

Nanocrystalline Silicon (nc-Si: H) is an important material for photovoltaic energy 

conversion dev ices and for thin film transistors. The material consists of small grains of Si, 

of the order of 10-20 nm, with a significant amorphous phase and bonded Hydrogen (H) 

interspersed between the grains. Their presence serves to passivate the grain boundaries and 

reduces the recombination at the boundaries which lead to reasonably good electronic 

transport in the device. Hence material can be used for applications in photovoltaic cells 

(which depend upon efficient collection of minority carriers) and thin film transistors, which 

require good electron and hole mobilities. 

What has not been done previously is a systematic study of the fundamental material 

properties in a device-type structure and the relationship between these properties and the 

processing conditions. The transport properties in transverse direction, measured in films 

deposited on glass substrates are very different from the properties in the vertical direction 

measured in films deposited on stainless steel substrates. Hence our research is involved with 

studies on the device type structures. 

In this work, a systematic study is carried out of midgap defect densities and minority 

carrier diffusion lengths in nanocrystalline p+nn+ devices by changing the doping and defect 

densities with different techniques. The devices and films were grown using mixtures of 

silane and hydrogen in a VHP diode plasma discharge. Parameters such as temperature, 

pressure and hydrogen/silane ratios were systematically varied to produce films with 

different crystallinity and native donor concentration. Defect densities were measured and the 

energetic location of the traps was found to be approximately 0.5 to 0.35 eV below the 

conduction band. A surprising finding was that there was a 1:1 correlation between the deep 

defect states which were responsible for carrier capture, and the donor density. The diffusion 

length were measured and showed an excellent correlation with the deep defect density, 

approximately following the Shockley-Read-Hall recombination model which is the first 

experimental validification of the theoretical model. 
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Special samples were also prepared for measurement of mobility using space charge 

limited current techniques in n+nn+ devices, and for measurement of carrier lifetimes using 

reverse recovery techniques. These measurements, by other students in the group, showed 

that the mobility of electrons was in the range of 1 cm2/V-s and that hole lifetimes were in 

the range of few hundred nanoseconds. When the measured hole lifetimes were plotted 

against the inverse of the defect densities measured in these very small devices, an 

approximate linear correlation was obtained, thus verifying the SRH recombination model. 

The simultaneous measurement of diffusion length in these very same samples yielded an 

estimate for the hole mobility. 

Also Dark I-V current studies on these devices were done and their relationship with 

crystallinity was studied which was backed by Quantum Efficiency measurements. Two 

techniques of graded TMB and % were used to improve hole transport in these devices. A 

final device innovation was to study the use of a thin a-Si: H buffer layer between the n base 

layer and the p+ junction layer which significantly improved the open circuit voltage, 

presumably by reducing the recombination at the interface states. 

Thus, we have been able to make measurements of the important fundamental 

material properties, electron and hole mobility, defect density, minority carrier lifetime and 

minority carrier diffusion length, all in the same or very similar samples. This is the first time 

ever that such systematic measurements have been made in this material system. 
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CHAPTER 1 

INTRODUCTION 

Nanocrystalline Silicon (nc-Si: H) is a heterogeneous material of crystalline grains 

and the amorphous tissue. The grains can have sizes that can vary from couple of 

nanometer's (nm's) to hundred's of nm's. The grains are surrounded by grain boundaries 

which are saturated with Hydrogen (H) or with thin a-Si: H tissue. The presence of 

significant H bonding at the grain boundaries, and the presence of the thin amorphous tissue, 

lead to excellent minority carrier transport through the grains and minimize grain boundary 

recombination. Another big effect on the transport is the arrangement of grain aggregates or 

possibly column's, separated by grain boundaries causing anisotropy in the transport and/or 

depth profile of the transport properties. Unlike amorphous silicon which has a short ranger 

order, nc-Si: H has small crystallites within the amorphous tissue and crystallite size 

increases as the thickness increases, thus showing a localized order. 

In 1968 Veprek and Marecek1 succeeded for the first time with the deposition of 

hydrogenated microcrystalline silicon (mc-Si: H) fabrication. (Note: Both mc-Si: H and nc-

Si: H have been used as synonyms in all the literature. What was initial called 

microcrystalline silicon with size below lOOnm was named Nanocrystalline by Federal 

Regulation and NSF). Initial applications of microcrystalline silicon (mc-Si) were restricted 

to its use as p-layers for p-i-n devices because of its high conductivity and high transparency. 

Its application for Thin-Film Transistors (TFT) was also proposed but never followed 

seriously until lately because of the following reasons: 

1) It was assumed that nc-Si: H has high defect density and therefore cannot be used as 

photovoltaically active layer in a solar cell device. 

2) The strong n-type character was generally observed in as deposited undoped nc-Si: H 

which led to poor electronic properties (hole lifetimes and poor mobilities). 

3) There were doubts about the bandgap of nc-Si: H as compared to crystalline Silicon 

because of higher absorption with nc-Si. 
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4) The long fabrication times with 'standard' PECVD deposition techniques, with 

reported deposition rates below 1 A/sec, was too low for depositing thicker layers. 

5) Since nc-Si: H is an indirect bandgap material, higher thickness of i- layer is required 

for effective absorption around 5-10 pm. 

Due to the excellent optoelectronic properties that can be obtained with improved 

deposition methods like very high frequency glow discharge (VHF-GD) and Hot-Wire with 

PECVD, (nc-Si: H) has been experiencing a new wave of interest in the scientific 

community. Substantial amount of research is being done to understand the material and 

electrical properties of nc-Si along with its structure and deposition trends for which 

simulation and modeling studies are being conducted by different groups. 

Motivation for understanding this material comes from the facts that: 

1) The nc-Si: H shows a very little light induced degradation which has hampered the 

use of amorphous silicon as commercial material thus far. 

2) Low temperature deposition for obtaining good quality material (~200C) is 

completely compatible with the amorphous deposition, unlike crystalline silicon. Low 

temperature processing also gives flexibility of using cheaper substrates like plastics 

and organic substrates. 

3) Higher absorption coefficient in the infrared range, because of it lower band gap can 

be used effectively as a bottom layer to amorphous layer for efficient trapping of the 

whole solar spectrum in the so called 'Micromorph' solar cells. The band gap of nc-Si 

is comparable to crystalline silicon and the increased absorption of nc-Si compared to 

crystalline silicon can be attributed to the light scattering at the grain boundaries as 

has been shown2,3 in the Figure [1.1 & 1.2]. 

4) High conductivity and high transparency has lead to its use in p layers for p-i-n/ n-i-p 

device type structures. 

5) Since there is a lower density of valence band tail states, nc-Si gives higher carrier 

concentration which can be used to make p-channel TFT's. 

6) Higher mobility as compared to amorphous Silicon is major advantage for operating 

speed. 
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Before we dig deep into literature and research done, its worthwhile to mention the 

objectives of this research as the things to follow have been done keeping these 

objectives in mind. The objectives have been stated below: 

1. To measure donor and deep defect densities in nc-Si: H devices prepared under 

various deposition conditions and establish a correlation between growth and donor 

and defect densities 

2. To measure fundamental device-related property, diffusion length of holes and to 

establish whether the transport is controlled by field (as in a-Si: H devices) or by 

diffusion (as in crystalline Si devices). 

3. To change the donor and defect densities 

4. To study the correlation between defect densities and diffusion lengths and from that, 

to study what the recombination mechanism is. 

5. To provide device-type samples for measurement of other important parameters, such 

as mobilities and carrier lifetimes, to others in the group, so that complementary 

measurements can be made on the same or very similar samples. Also, to correlate 

results from complementary measurements with the conclusions drawn from my 

measurements of defect densities, donor densities and diffusion lengths. From these 

measurements, establish values for some other fundamental parameters, such as 

capture cross sections of traps in this material. 

6. To study the Dark I-V curves in the device and see if they agree with the 

recombination mechanisms identified above. 

7. To design and fabricate improved devices, by using dopant grading techniques and by 

using amorphous interfaces to reduce recombination at the p-n interface. 
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CHAPTER 2 

LITERATURE REVIEW 

1. Understanding the material: 

For large scale application of photovoltaics (PV), it is imperative to reduce the 

manufacturing cost of PV modules by a factor of 2-3 compared to wafer based crystalline 

silicon wafer based technology. Thin film solar cells have been keen area of research 

involving different forms and materials of Silicon, CdTe, Cu (In, Ga)Se% and many others. 

While amorphous silicon has been studied and understood a lot, it still suffers from problems 

of low efficiency and Stabler- Wronski-Effect. 

In 1994 the research group at IMT, Neuchetal Switzerland introduced a new 

photovoltaic material with low defects and moderation conversion efficiency called 

'Microcrystalline silicon' named due to its small crystal size. Since then lot of studies have 

been done on the growth of the material and deposition techniques. However there is a lot 

that we still that we donot understand about the material for getting its best use. 

The deposition and transport quality of nc-Si is a big function of the substrate and 

deposition conditions4 used. The low temperature processing allows for using different 

cheap substrates including plastic substrates, stainless steel and glass substrates. These 

crystalline silicon films are usually preceded by a-Si layer5"8 and the crystallinity of the 

material and grain size are a strong function of the preceding layer. The material is known to 

have anisotropic behavior in the transport properties. Hence it is very important to understand 

the transport in both parallel and perpendicular directions to the substrate, although for 

photovoltaic applications it is important to know the properties in the direction of the growth. 

AFM studies have shown, done parallel to the surface, two types of grain boundaries - small 

and large. The small ones are 20- 30 nm big while the large GB's (agglomerates of smaller 

ones) are 200-300 nm. It has been shown9"10 that there are 1018 grains and only 1016 defects. 

Therefore It has been assumed that these small grains and their grain boundaries are defect 

free and these boundaries whether they are a-Si tissue or titled boundaries11' 12 donot 

adversely affect the band like - transport properties. This idea was independently confirmed 
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by pico-second laser induced grating13. It has been proposed that the role of Large Grain 

(LG) boundaries is that all the defects and impurities like C, N,0 or even H segregate to LG 

boundaries formed by a-Si tissue, whose mobility gap increase with alloying. At this point 

sharp decrease in Go (conductivity pre-factor) is found which has been explained by potential 

barrier formed at the boundaries. This limits the dominant transport to hopping conduction 

through the tail states below the conduction band. Kocka4 has similarly shown the growth in 

the form of cones forming large grain boundaries formed by agglomeration of small grains as 

seen in the Fig [2.1]. 

"NE, 

transport 
path 

DOS 

c 

large grain large large grain a_Sj:H 
boundary grain boundary 

large 
grains 

small 
grains 

substrate 

Fig 2.1: Grain Boundaries and growth model by kocka 
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Hamakawa and Takakura14 have shown the device simulations for the transport of 

microcrystalline silicon solar cells and found that the interface states are found at the grain 

boundaries along with the a-Si tissue. Because of the broad electronic state distribution is 

given at the GB (Grain boundary), potential has a peak in the conduction band and valley in 

the valence band as shown in the Figure [2.2]. This potential barrier is measured as the 

activation energy in the microcrystalline films. 

M gb I 

Figure [2.2]: Band profiling at GB14 

Collins15 proposed that microcrystalline nuclei originate in the (a -> a + nc) transition 

layer and act as seeds for the growth of crystals whose size increases with the thickness of 

the film 

Nw-

Figure [2.3]: TEMpictures supporting the cone growth model and the seed layers 

that help in growth of microcrystalline silicon used as seed layer15. 
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Figure [2.5]: Different types and size of crystals that can be formed ,16 

It has been shown that the microcrystalline grain size is a strong function of the ratio 

SC = SiHVSiH4+H2 and also the thickness of the film. Crystalline grain size can be estimated 

by broadening the X-ray diffraction peaks using the Debye-Scherrer equation. As the Hz 

dilution is lowered in SiH^ the open circuit voltage of the devices is expected to increase and 
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the crystalline fraction would decrease. This effect has been seen in films as shown below17 

in Figure [2.6]. 

2.0 

3% 
Protrusion 

1.5 

4% 

1.0 

5% 
0.5 

6% 
220*C 

0.0- ' 

300 350 400 450 500 550 600 650 700 750 

Wavenumber (cm-1) 

Figure [2.6] Varying Raman Intensity peaks for different SC's17 

Until recently 13.56 MHz has been the driving frequency but with the requirement of 

getting better grain sizes and faster deposition rates other methods of deposition are being 

studied including VHF (Very High Frequency) , Hot-Wire and few other CVD methods. In 

1987 IMT, Neuchetal, introduced a new method of deposition know as Very High Frequency 

"VHF" plasma enhanced CVD method18. Using higher plasma excitation frequencies, it has 

been shown that the deposition rate increases by 5-10 times by various research groups19"21. 

Also using the higher frequency gives better quality microcrystalline layers due to 

lower energy ion bombardment on the growing surface. The thinner plasma sheaths obtained 

at higher frequencies lead to lower sheath potential and hence ion bombardment on the 

growing layer is reduced. The r.f power also gets more efficiently coupled-in into the bulk 

plasma and hence higher electron densities and better SiH^ dissociation in bulk plasma is 

possible as well as increased radical and ion flux on to the growing surface can be achieved 

at moderate sheath voltages. 
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It is useful to note that the increase in frequency also drives plasma non-uniformities 

due to several electromagnetic effects: the skin effect, edge effects and the standing wave 

conditions. 
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2. Growth regime: 

It is generally believed that best electrical properties of the devices are obtained when 

the i- layers (base layers) are deposited at the interface of a-Si and nc-Si interface or so called 

"near-the-dege"24. It has been seen that devices which are deposited with larger grains have 

shown deterioration not only in current density but also in FF and efficiency. There can be 

several possible reasons like: 

1. more efficient contamination in the 'grains' (as opposed to the 'grain 

boundaries') 

2. Insufficient hydrogen passivation of defects along 'grain boundaries' (loss of 

H coverage if grains are deposited at higher temperature) 

3. Unidentified deterioration of carrier transport in the film growth direction 

4. Poor interface compatibility or higher density of p/i interface defects or 

something else? 

3. Effect of impurities: 

Nanocrystalline Silicon growth is very sensitive to the impurities and oxygen has 

been the main impurity affecting the material properties of the solar cells and films. It has 

been reported that oxygen present in the grain boundaries in electrically active and behaves 

as a donor state25. These accumulated donors at grain boundaries can cause a shunt leakage 

along the columnar structure which leads to lower open-circuit voltage Voc and lower Fill 

Factor FF. While Boron from TMB is used to compensate for the oxygen, extra boron is 

know to form a catalytic reaction with % forming the B-H bonds and reducing the atomic H 

at the growth surface and hence deteriorating the crystallinity. This catalytic effect also leads 

to increase in the growth rate. 

4. Effect of temperature: 

The low temperature deposition can be preferential in terms of crystallinity and 

defects created as shown by Kondo21. Figure [2.11 shows that higher value of crystallinity is 
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obtained for temperatures around 200C, while it decreases on either side of it. Also shown in 

Figure [2.12] is that carrier density increases significantly after 200C which can be attributed 

to oxygen which acts as donor atoms. 
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Figure [2.11]: Crystallinity vs. deposition temperature21 
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Figure [2.12]: Mobility and carrier density vs. deposition temperature 
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nc-Si: H as a material is very sensitive to the impurities. As it has been found that undoped 

nanocrystalline shows n type behavior because of the electrically active oxygen present in the 

grain boundaries. These accumulated donors at GB's leads to shunt leakage along the 

columnar structure resulting in lower Voc and FF. Decrease in the oxygen can be achieved 

using three techniques 

1) Micro doping: In this effects of oxygen can be compensated by carefully doping the 

material with TMB. 

2) As shown, decreasing the temperature from 250C to 180C for deposition decreases 

the carrier density by 4 orders. 

3) Using Gas Purifier to clean the feed gases to very high purity. 

200 
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Figure [2.13]: Grain Size Vs. Deposition temperature21 

The effect of temperature on the grain size has been shown above. 
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5. High efficiency devices: 

Some of the high efficiency nanocrystalline n-i-p devices reported in the literature is 

by Yamamoto at Kaneka27 although in this lot of efficient light trapping techniques like light 

trapping layers and back reflectors have been used. 
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Figure [2.14]: Highest efficiency single junction microcrystalline silicon solar cell 

An extensive research has been done by various groups most of which has been 

concentrated on the determining the electronic propertied in the films while little systematic 

work has been done on determining the material properties of devices since films are grown 

on different substrates and may lead to different material properties depending upon 

substrate. While the research has involved mostly around the growth mechanism, the 

requirement to understand the basic fundamental behavior of these devices and their 

electrical properties is still missing. This has been the motivation towards doing this research 

to understand how the basic electrical characteristics as well as doping and defects affect the 

device properties. 
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CHAPTER 3 

MATERIAL GROWTH AND CHARACTERIZATION 

1. Sample preparation: 

Since the bandgap of nanocrystalline silicon much like crystalline silicon is indirect 

bandgap hence solar cell would need sufficient thickness of i- layer to have substantial 

absorption. It has been found that the diffusion length of electrons and holes in nc-Si: H is 

around 1 (im and is insufficient to ensure satisfactory collection in devices that are a few pm 

thick. So, drift-assisted collection of the carriers becomes important, and hence needs an 

intrinsic layer as photovoltaically active layer. 

Devices: 

contacts 

Nanocrystalline 
layer 

Stainless Steel 
Substrate 

Figure [3.1 ]: p+-n- n device 

The diagnostic devices we have studied are of the p+-n-n+ type as shown in Fig [3.1], 

with the n+ layer deposited first on a polished stainless steel substrate. The substrate is 

cleaned with the standard cleaning procedure of methanol and ultrasonic clean. The doped 

layers p+ and n+ are deposited using the ECR process by adding dopant gases of diborane and 

phosphine accordingly. Series of n+ are deposited and saved in methanol so the 
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reproducibility of the samples can be maintained and influence of impurities from the reactor 

walls with different runs can be minimized. The n+ is then etched in Buffered Oxide Etch 

(BOE) solution and cleaned in DI water and methanol before being loaded into VHF reactor. 

The undoped base layer is deposited using a VHF diode process at 45 MHz in separate 

reactor to prevent cross-contamination between layers. The layers are found to be n-type. 

Usually a 45 min dummy is done, once the n+ is loaded followed by four hours of baking of 

the reactor walls to take the moisture and oxygen out of the walls. This generally brings the 

pressure of the chamber down by the order of a magnitude (from 10"6 to higher orders of 10"8 

torr) leading to less oxygen in the system during the deposition and hence less doping in the 

base layer. 

This undoped base layer is deposited in two stages, a nucleation stage where a 

hydrogen/silane ratio of 20:1 is used, and the main stage where the ratio is graded with time 

and reduced to 12:1 to 14:1. We have found out that once the seed layers has been deposited 

and the nanocrystalline layers begins to deposit, even low dilution ratio of hydrogen/silane of 

12:1 can be used to increase the growth rate and also vary the grain sizes and the way it 

forms interface with the p+ layer. The band diagram is shown in the Figure [3.2]. The i-layer 

in lot of recent devices is followed by a very thin a-Si cap layer which influences the Voc of 

the device. This is followed by p+ layer which is very thin nc-Si layer and a-(Si C): H as the 

top layer. 

Z Graded Band gap 

\ 

Thin a-Si 

Figure [3.2]: Band Diagram of the device 
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The purpose of the a-Si layer is to prevent the oxidation of the top surface of nc-Si: H 

layer but as will be shown later it also helps in open circuit voltage. If it is too thick or if too 

high a bandgap is used for a-(Si C): H, inflection points occur in the I-V curve. 

The top contact is transparent, conducting ITO deposited in a sputtering chamber with 

ITO target, done under high vacuum and Argon + O2 environment. The deposition of the ITO 

is done for 2.5 min after a 2 min conditioning layer using a 20W power. The devices are later 

annealed at 175 C for 15 minutes to make sure we have good contact of ITO with the top 

layer of the device. It has also been found out that depositing 1000A of Aluminum over the 

ITO and driving a forward current through the contacts for few minutes brought the series 

resistance of the device considerably and helped in getting better FF (Fill Factor) for the 

devices. 

2. VHF reactor: 

The VHF reactor used for this study has been shown in the next Figure. It's a 

capacitively coupled reactor with the electrode as the lower plate. The n+ was loaded in the 

substrate holder with the suitable mask which acted as the upper plate. Three heating rods are 

installed in holder to provide uniform heating along the substrate. The thermocouple is 

hooked up very close to the substrate to make sure that delta in actual and an indicated 

temperature is minimal. Special attention is given to make sure that proper grounding has 

been obtained so that stable and reproducible plasma's can be obtained every time. 

As seen in the Figure, the outside walls of the reactor having heating tapes attached 

along them which were used to bake the reactor walls and bring the vacuum down by an 

order of magnitude. The constituent gases were flown from the Mass flow controllers after 

the careful calibration of the gas flows has been done. The plasma was started at higher 

pressures to make sure that stable plasma has been obtained, which would efficiently 

dissociate the gases and lead to desired deposition on the substrate. 
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Figure [3.3]: VHF reactor used for making devices 

3. Characterization techniques: 

Various characterization techniques that have been used in this study have been listed 

and explained below: 

A. Thickness using Spectrophotometer-^ 

B. I-V Analysis 

C. Quantum Efficiency Measurements 

D. Measurement of doping and defect densities 

E. Measurement of diffusion length of holes 

F. Structural Measurements 

1. Raman Analysis 

2. XRD Analysis 
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A. Thickness: 

The thickness of the films is determined from the period of oscillations in the 

transmission versus wavelength curve in the 1000 to 2500 nm range using the 

spectrophotometer^ by using the equation 

where i is the number of complete cycles from Xito X2 which are the wavelengths of the i 

cycles. For the two adjacent maxima or minima, i =1. Figure [3.4] shows the signature 

transmission of devices which can be used to extract the thickness 

n, is the index of refraction and is usually a function of the wavelength used 

for the ne-Si: H films over the above wavelength range. 

(3-1) 

where (3.2) 

2/6339 
100 

20 -

0 
1000 1200 1400 1600 1800 2000 2200 2400 

wavelength(nm) 

Figure [3.4]: Plot of% Transmission Vs Wavelength obtained from Lamda-9 

spectrophotometer 
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B. IV analysis: 

IV curves, under illumination are measured using an ELH lamp set up. The lamp was 

adjusted to 1.0 sun intensity using a calibrated Silicon solar cell for 1.5AM sun spectrum. 

Figure [3.5] shows a typical I-V curve for a device made using the VHF process without any 

special back reflector or light trapping layers. The current density is 13.5mA/cm2, the voltage 

is 0.46V and the fill factor is 0.65. The n layer thickness was ~1.2 micrometer. The 

corresponding quantum efficiency curve is shown in Figure [3.7] 

2-9010AA2 

2-5— 

1.5 -

0.5 -

.6 -0.4 -0.2 _o,5 J 

Voc - 0.46V 
Jsc - 13.6mA/cm2 ~1'5 " 
FF - 65% 

2^5-

) 0.2 0.4 \ 0 

Figure [3.5] : Typical IV curve of the nc-Si 

C. Quantum efficiency: 

Quantum efficiency of the devices was measured using the setup as is shown in 

Figure [3.6]. In this setup the DC beam light of (~lAmp) shines on the sample to fix the 

quasi Fermi levels (and hence fix carrier life times) and the small AC light measures the 

photoconductivity for the sample. The ac beam superimposes on the dc beam and thus 

modulates the photocurrent generated in a sample by creating the additional electron-hole 

pairs. The change in the photocurrent produced in the sample with the change in wavelength 

of the ac beam from the monochrometer can be detected by a lock in amplifier with signal 

being amplified using a pre-amplifier. 
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The range of the monochrometer that we have used is from 400 nm to 900 nm where 

the output light is chopped by chopper modulating the photon signal to produce 13.5 Hz 

square wave. This reduces the noise due to ambient light and 60 Hz power lines. High pass 

filter of 700nm is used to get rid of the lower wavelengths and to reduce second harmonics 

while doing measurements above 700nm. 

Light 
Source 

Lock In 
Amplifier 

Monochrometer 

Pre-amp 

Figure [3.6]: Quantum Efficiency Set up 

The measurements are made at 0 and -0.5 V. During the reverse bias, the depletion 

width in the i-layer increases. Since no considerable gain in the collection is obtained with 

increasing the depletion width, which is given by the ration of collection at zero and reverse 

bias, it shows the high diffusion length of the minority carriers and that most of them make it 

at zero bias to the depletion region. 

While the relative quantum efficiencies at lower wavelengths, which correspond to 

higher energy and are absorbed at top layers of the device which is primarily p+, give 

information about the p+ -n interface, the QE values at 800nm and around are from the 

absorption in the Nanocrystalline layer. The higher the QE value at these wavelengths imply 

higher crystalline fraction in our films. 
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Figure [3.7] Relative Quantum Efficiency vs. voltage 

D. Measurement of doping and defect densities: 

C-V measurements are plotted as 1/C2 Vs V at different reverse bias voltages as seen 

in Figure [3.8] using an Agilent CV meter. The measurements are made at room temperature 

and using drive voltage of lOOmV. The standard frequency used is 120 Hz and the 

measurements are done with the dark box covering the sample so that the surrounding ac-

light does not influence the measurements. The instrument is calibrated every time before the 

measurements for open and short circuit corrections before the measurements are made. At 

this lower frequency we allow sufficient time for most of the carriers, even the ones in deep 

states, to respond to change in polarity. From the work of Kimerling28, it is well known that if 

one uses a low frequency capacitance, one can estimate the total doping and defect densities 

by plotting the effective capacitance vs. reverse voltage, i.e. versus the thickness of the 

depletion layer. At low reverse voltage, one gets an estimate of doping density alone; at 

higher voltages, one gets the total of (doping + deep defect) densities. The slope decreases 

(doping increases) with voltage and then saturates, as expected from Kimerling's model. The 

difference between the two values of Nda and Ndi gives the value of defect density in the 

material. These measurements were even used for calculating the diffusion length in the 

material as explained later. 
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Figure [3.8]: C-V curve for device 

E. Measurement of diffusion length of holes: 

The diffusion length of holes was measured using relative quantum efficiency vs. 

reverse bias voltage techniques in combination with capacitance-voltage measurements. It is 

easy to show (derivation in the Appendix A) that when a Lp «1 and t/ Lp «1, where a is 

the absorption coefficient, and t the thickness of the undepleted base layer, and Lp the 

diffusion length, 

QE ~ a (Wd + Lp) [1] 

where, Wd is the depletion width determined from low frequency capacitance 

value. With varying voltage, varying depletion width can be plotted against relative QE 

signal, (measured at 900 nm); the intercept gives an estimate of diffusion length. Also using 

different values of diffusion length, theoretical QE can be calculated and matched with 

measured experimental QE as shown in Fig [3.9 & 3.10]. 
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Figure [3.10]: Lp measured from the above plots to be 1.05 jum 

F. Structural analysis: 

1. Raman analysis: 

Raman Analysis is the standard technique used in determining the amount of 

crystallinity in the film. Raman spectra has been obtained on some of the nanocrystalline 

layers that have been used in the devices, which clearly showed highly crystalline base 

layers, with a Raman peak ratio of about 3.8:1 or higher. The growth temperature for the base 
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layer was kept low, ~250 °C, so as to preserve hydrogen bonding at both grain boundaries 

and in the a-Si: H tissue. Use of temperatures in excess of 350 °C generally resulted in a 

poorer device. As seen the Raman shows the peak at 520 cm'1 related to crystalline fraction 

and a smaller peak around 480 cm"1 for amorphous matrix in the film. Further details on the 

use of Raman Spectroscopy for determining structure have been explained elsewhere29. 
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Figure [3.11]: Raman for nc-Si film29 

2. X-ray Diffraction (XRD) analysis: 

XRD relies on the dual wave/particle nature of x-rays and provides information about 

the structure of the crystals depending upon the diffraction pattern. As shown in the Fig 

[3.12] below, the peaks corresponding to different crystallographic directions have been 

shown29. When we do the VHF deposition at very low pressures, we get more of <111> 

oriented grains which is same as from the samples made in ECR. Some other groups have 

shown <220> oriented grains in the direction of growth. The big spike seen next to <220> is 

from Iron found in the stainless steel substrate 
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Figure [3.12]: XRD analysis for film made in VHF reactor29 
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Figure [3.13]: XRD showing the variation of <111> and <220> peak with varying silane to 

hydrogen concentration30 and higher <220> peaks obtained at higher pressures30 

Figure [3.13]30 shows the role of hydrogen in the growth of nanocrystalline silicon. 

As the ratio of silane to hydrogen is decreased bigger peaks are obtained for <111> and 

<220> oriented grains. 
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CHAPTER4 

RESULTS AND DISCUSSION 

In this section, I discuss in detail about the systematic research done to find out the 

effects of various deposition parameters on the material and electrical properties of nc-Si 

devices. Most of the results are on p-i-n devices as described before which really turned out 

to be p+nn+ devices. This chapter will talk in detail about the effects of dopants (TMB and 

PH3) on the electrical properties and how they affect the defects and doping in the devices 

along with changing the diffusion lengths. Then effects of changed in the other parameters 

including the effects of pressure, temperature and seed layers have been studied along with 

dilution of SiH4 and H2 will be described. Systematic work has been done here to study the 

effects of these parameters on device characteristics in contrast to previous work, which was 

on films grown on glass. Our measurements done are on actual devices. 

1. Effect of ppm levels of Boron and Phosphine: 

It is well known that the as grown nanocrystalline Si films are usually n type. This n 

type doping has been ascribed to the presence of oxygen in the films, which leads to a donor 

state, either within the grain, or at the grain boundaries31. One way to control this accidental 

doping is to compensate it by adding ppm levels of Boron. Boron (B) was added by using 

highly diluted (20 ppm in hydrogen) Trimethyl Boron gas to the silane and hydrogen 

mixtures. In Figure [4.1], we show the influence of adding B to the effective donor density in 

the material. It can be seen that the doping reduces significantly as the flow of TMB 

increases. 

One can also change the doping by adding ppm levels of Phosphorous (P), using 

highly diluted phosphine (lOppm in hydrogen) to the silane, hydrogen and TMB mixtures. 

Here, one expects an increase in donor concentration. Figure [4.2] shows that when 

phosphine is added to the gas mixture, the carrier concentration increases, even when boron 

is present. 
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Figure [4.1]: Effect of TMB on Jsc, defects and doping 

We do not know what the exact mechanism for compensation by boron (B) is. Most 

likely, B forms complexes with oxygen, as is the case for Czockralski grown crystalline Si, 

thereby removing both the donor and defect states associated with oxygen from the gap. 

Adding phosphine, of course, add P to the lattice, which is a donor state. Thus one expects 

that addition of P will increase the carrier concentration, as seen from Figure [4.2]. 

An interesting result of compensation is the increase in short circuit current. As the 

donor concentration decreases, the short circuit current increases, as seen in Figure [4.1]. At 

too high a concentration, the current begins to decrease again. The reason for the increase in 

current can be seen from the measurement of diffusion lengths in these very same samples. 

This result is shown in Figure [4.3], where one finds that the diffusion length of holes 

increases as the TMB flow increases. At too high a TMB flow, the diffusion length begins to 

decrease again, corresponding to a decrease in short circuit current. Thus, all the results are 

self consistent. 

Figure [4.3] also shows the influence of adding P to the lattice on the diffusion length 

of holes. In agreement with the results on Czochralski crystalline Si (which usually contains 

significant amounts of oxygen), as the P concentration increases, the hole diffusion length 

decreases. 
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Figure [4.2]: Effect of PH3 on doping and defects along with current density 
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Figure [4.3]: Increasing Diffusion length with TMB compensating for O2. 
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2. Relationship between deep defects and net doping: 

A very interesting, and unexpected, result is the influence of compensation and 

additional doping on the defect density, Nt. As explained earlier, variable voltage and 

frequency capacitance data provide us with a measurement of both shallow defect (donor) 

density, and deep defect (donor + deep defect) density in the base layer of the device. Figure 

[4.4] shows the relationship between defect density and net donor density. As explained 

earlier, the net donor density was changed by either adding B or P, or both. Figure [4.4] 

shows that as the net donor density changes, the defect density also changes with it in almost 

linear fashion. A similar result had been obtained using ESR measurements in films by the 

group at Hahn Meiner Institute33, but at much higher donor concentration. We have been able 

to extend their results to carrier concentrations more typical in devices, and make the 

measurements in devices. 
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It is not clear why such a relationship should result just from doping. Perhaps, as 

suggested earlier, the native oxygen defects which give rise to donor states are also somehow 

responsible for creating deep defects in the material. The addition of B ties up some of these 

oxygen states, and this fact results in a reduction in deep defects. But when P is added, either 

additional defects are introduced through impurities in phosphine, or by phosphine forming 

P-B complexes, and thereby reducing the beneficial effects of B compensation. In the 

absence of further experiments, we cannot uniquely distinguish between these models. But I 

will show later on that native oxygen definitely seems to be related to the presence of donor 

and defect states. 

3. Measurement of diffusion length of minority carriers (holes) and deep defect density: 

As explained earlier, the diffusion length of holes was measured by simultaneously 

measuring the depletion width (using capacitance Vs Voltage) and quantum efficiency. The 

diffusion lengths were measured in samples with deliberately varied doping and defect 

densities. Appropriate conditions for measuring the diffusion lengths of the devices, as 

described in Chapter 3, were observed. 

In Figure [4.5], I plot the relationship between the square of the diffusion length, Lj, 

and inverse of defect density. The basic recombination model, the Shockley-read-Hall model, 

for trap controlled recombination, states that square of the diffusion length should be 

inversely proportional to the deep defect density, assuming that the mobility is independent 

of defect density (and to doping, in our case). In nanocrystalline materials, since the transport 

is dominated by the grain boundaries, the mobility can be expected to be relatively 

independent of doping density and only depend strongly on the grain size. Since the grain 

size in our devices does not change appreciably, a result deduced from x-ray data, one 

expects a linear relationship between Ld2 and 1/Nt. Figure [4.5] shows such a linear 

relationship, thus suggesting strongly that the SRH model is valid. 
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Figure [4.5] Le? vs. 1/Nt - linear relationship34 

4. Measurement of location of trap levels: 

One can estimate the depth of the trap level by using multi-frequency capacitance. At 

very high frequencies, electrons in the deep states cannot come back out in the time period of 

the frequency, and therefore, only the shallow traps respond, the effective depletion width is 

higher, and the capacitance is lower. At the lowest frequencies, electrons in all the states can 

respond, the effective density is higher, the depletion width is lower and the capacitance is 

higher. Thus, with increasing frequency, one begins to see a decrease in capacitance. This is 

shown in Figure [4.6]. 

From this figure, we see that the capacitance begins to decrease at somewhere 

between 400 and 1000 Hz. This sets a lower limit for the energetic location of traps. The 

location of the highest energy traps can be determined from the measurements done at higher 

frequencies on a sample whose thickness of the base layer, measured using reflection 

measurements, was 0.55 micrometer. As expected, at the highest measurement frequency 

(100 kHz), the capacitance saturates at fairly low reverse voltage. 
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Fig [4.6] Capacitance vs. Voltage at different frequencies, Drive voltage is lOOmV 

Since we can measure the donor density in this sample, we can estimate at voltage 

where the saturation should occur. If this value of voltage agrees with the measured voltage 

for saturation, assuming the usual value for built-in voltages (-0.8V), then the deep states are 

not responding at this frequency. From Figure [4.6], the donor density was estimated at 7-

were responding, the saturation should occur at -0.7 V, corresponding to geometrical 

capacitance. That is the range in which the saturation in capacitance occurs in Figure [4.6] at 

a measurement frequency of 100 kHz. And the measured value for capacitance also agrees 

very well with the geometrical capacitance corresponding to the thickness of the base n layer. 

Thus, we can assume that the shallowest traps correspond to a measurement frequency of 

-100 kHz, and the deepest to a frequency of 400 Hz. 

Now we can use the standard equation for attempt to escape frequency, 

and measurements are done at Room Temperature 35 

8*1015 cm"3, and the deep state density also at around 8*1015 cm"3. Thus, if only the donors 

(4.1) 
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to estimate the depth of the trap Et below the conduction band. The standard value for vo is 

~l*10u sec"1. Then, at 400 Hz, the trap depth is 0.5 eV, and at 100 kHz, the trap depth is 

0.36 eV. Therefore, we estimate that the deep traps are in the range of 0.35 to 0.5 eV below 

the conduction band. Note that this value will change a little if we change the value of vo, but 

given the logarithmic relationship between the trap depth and vo, it will not change much. A 

method for measuring vo is to estimate the carrier lifetime and defect density at the same 

time, and then determine vo in that sample. Such measurements are being pursued by other 

students in the group. 

5. Dark IV curves and crystallinity: 

Dark I-V curves of diodes yield very valuable information; in particular, they allow 

one to determine the type of recombination, and to see if trap-controlled recombination 

dominates. 

The dark current measurements for two cells are shown in Figure [4.7] and [4.8]. The 

cell corresponding to Figure [4.7] was made using an ECR plasma process and the one 

corresponding to Figure [4.8] using the VHF plasma process. The sample made with the ECR 

process shows an I-V curve which can be deconvoluted into two parts, one corresponding to 

exp (qV/2kT) and one corresponding to exp (qV/kT), as shown there. Thus, this cell follows 

the standard model of a diode, where the current comes from both a generation-

recombination region in the depletion layer and diffusion from the bulk. But the curve in 

Figure [4.8] cannot be deconvoluted into two simple parts, suggesting that it is less 

crystalline and more amorphous. When Raman spectra were measured on these same cells, 

the ECR cell showed a Raman ratio of >4:1, whereas the VHF cell had a lower Raman ratio, 

-3:1, thus agreeing with the I-V curves. Note also that the ECR cell had a higher mid-level 

defect density than the VHF cell, which of course adds to the GR current component. 

Note that one can change the nature of the I-V curves in the cells made using the 

VHF reactor by adding to the deep level impurities, e.g. by adding phosphine. Then the 

generation-recombination current, the one corresponding to exp (qV/2kT) should increase, 

and one should be able to distinguish between two parts. 
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Fig [4.7] Dark IV curve from sample from ECR Reactor .29 
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Figure [4.8]: Dark IV curve for 7043 showing distributed defects from VHF reactor 

This was observed, as shown in Figure [4.9], where I show the data on dark I-V curves for a 

number of cells with varying PH3 doping. As expected, s the concentration of PH3 in the gas 

phase increases, the curves become more 2-region like. Note also that the initial portion of I-

V curve, which is the one dominated by the GR component, increases sharply as PH3 

increases, as expected 
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6. Effect of Hydrogen dilution: 

It has been known for a while that the best performance appears to be achieved when 

the materials has some degree of amorphous phase in it. This may be because of a number of 

reasons: 

1. The amorphous phase may be necessary to better compensate the grain boundaries, 

particularly the large grain boundary. 

2. The amorphous phase may prevent formation of columns and cracking if the grains 

become too large. It may lower the strain in the layer. 

Dark I-V Effect of Ph3 
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Figure [4.9] Dark IV curve of VHF deposited sample along with 2/7455 with PH3 

added 

In any event, it is known that as the thickness increases, grain sizes increase and 

amorphous phase decreases. To maintain a more uniform amorphous phase, it was suggested 

by36 that one should use H grading, such that H dilution is decreased as the thickness 

increases. The decreasing H concentration would serve to keep some degree of amorphous 

phase in the device throughout its thickness. In agreement with the previous results, we also 

found that both current and open circuit voltage increased as the hydrogen dilution was 
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reduced. See Figure [4.10] for relationship between H grading and short circuit current, and 

Figure [4.11] for the relationship between Voc and H grading. 
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Figure [4.10]: Effect of H2 dilution on the Jsc of the devices 
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Figure [4.11]: Effect ofH2 dilution on the Voc of the devices 

We also measured defect densities and diffusion lengths in devices made with and 

without H grading, keeping everything else constant. Figure [4.12] shows the influence of H 

grading on defect density and diffusion length for two samples which were otherwise 
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identically prepared. It is clear from this data that the diffusion length and defect density both 

improve as H grading is introduced 

7. Use of graded ppm B doping to improve carrier collection: 

Another method for improving the carrier collection is to use graded B doping. The 

principle of the technique is shown Figure [4.13]. By grading the effective n-type doping 

level with graded ppm compensation with B, one can induce a built-in field to assist the 

transport of holes towards the p+ junction layer 
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Figure [4.12]: Effect showing higher defects and lower Ld with no graded H2 

devices 

Therefore, it should result in higher currents and higher effective diffusion lengths. 

The higher diffusion length should show up immediately in QE curves, and also show up as 

higher collection for 800 nm photons in very thick layers. This was indeed observed. Figure 

[4.14], I show the QE vs. reverse bias curve for a sample with graded ppm B doping, and the 

fit of the data to the model shows an effective diffusion length of >10 micrometer! Of 

course, now the transport is no longer controlled by diffusion but by drift as a result of the 

internal doping-induced field. The corresponding device I-V curve is shown in Figure [4.15], 
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showing excellent current densities (20 m A/cm2). The increase in QE at 800 nm for a ppm B 

graded Vs an ungraded cell is shown Figure [4.16]. 
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Figure [4.13]: B grading leads to higher electric field assisting hole transport 
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Figure [4.16]: Effect of TMB on QE at 800nm 

Note that this is a new technique that we have introduced to improve the performance 

of ne Si: H cells. It may be very beneficial when one starts working on other materials such 

as nc-(Si, Ge): H and nc-(Ge, C): H cells which may not have as good properties as ne Si: H. 
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8. Improving voltage by the use of an interfacial capping or buffer layer between the p 

and the n layers: 

Recombination at p+n junction interface is known to lead to reductions in open-

circuit voltages in c-Si cells. To overcome such recombination, Sanyo introduced the concept 

of a hetero-interface, where one uses a thin amorphous Si layer followed by a p+ a-Si: H 

layer to make high efficiency crystalline Si solar cells37. The amorphous layer seems to 

passivate the interface, reducing recombination at that interface. We decided to see if such an 

interface can improve our devices, particularly voltage]. The corresponding improvement in 

open circuit voltages is shown in Figure [4.17], which shows that the open circuit voltages 

are uniformly higher when the cap or buffer layer is introduced. 
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Figure [4.17]: Thin a-Si buffer layer helped in increasing the Voc. 
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Figure [4.19] IV curve of a device showing the kink 

Note that one can go too far. From Figure [4.18], we can see that adding the a-Si: H 

layer introduces a notch in the valence band. The notch has to be thin enough for holes to 

tunnel through; otherwise, hole transport would be impeded. The influence of too thick an 

interfacial layer is shown in Figure [4.19], where I show two I-V curves, one where the 

interfacial layer was thin (~10 nm), and the next where we doubled the thickness of the layer. 
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The second I-V curve shows a distinct inflexion point, which has been ascribed previously in 

a-Si: H cells to the presence of a notch in the valence band. 

9. Improving fill factors by reducing series resistance: 

Series resistance in the diodes is a major problem. Excessive series resistance leads to 

IR loss, which translates directly into a loss in fill factor of the device. Typical resistance in 

our devices was of the order of 50 ohms for a 0.125 cm2 area, or about 6.25 ohm-cm2. There 

are several different conditions that can lead to excessive series resistance. Among these are: 

A. Resistance of ITO layer: 

The top ITO layer has a sheet resistance of 15-20 ohms/sq. If only a thin probe 

contact is used, then current collection from the entire dot can be a problem. To reduce this 

resistance, the easiest method is to introduce a central metal (Aluminum) buss-bar to collect 

the current. Then the current collection distances are reduced and one can also probe the A1 

bar. Clearly light transmission is also reduced, but since we are studying fundamental 

material properties, and not the absolute efficiency, this is not a problem for our case. 

B. The ITO/p+ interface: 

In particular, since the p+ layer is thin (in order to allow for maximum light 

transmission into the higher quality base layer), and it is deposited at low temperatures ~ 180 

C (to prevent catalytic decomposition of silane by diborane at higher temperatures), the p+ 

layer may oxidize, particularly during the ITO deposition, which involves energetic oxygen 

ions present in the plasma. This oxide layer can create problems with series resistance. 

To overcome both these problems, we used a central A1 buss-bar on the ITO contact 

(See Figure [4.20], and then annealed the contact at 175 C in air for an hour. Then, a large 

current (~50 mA» solar current which is ~ 2 mA) was passed thorough the diode for 1 min 

by forward biasing it under light. The purpose of the thermal and the electrical anneal cycle 

was to punch through any thin silicon oxide layer. When this was done, the series resistance 

reduced in every case. In our best diodes, it was of the order of ~3.3 ohm-cm2. 

Corresponding to this decrease in resistance, the fill factor in the device increased to 69%, 
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from the previous 60% range. See Figure [4.21]. Thus, by using this technique, we were able 

to produce devices with the fill factors which are in the range of the best values achieved 

(-70%), whereas previously, our fill factors were considerably lower. A high fill factor is a 

measure of how well current is being collected, and agreed with our QE and diffusion length 

data. 

ITO with AL 
buss bar 

Device 

Figure [4.20]: Device with Al buss-bar over the ITO Contacts 

10. Influence of seed layers on crystallinity and device performance: 

It is well knows that there is a transition region between amorphous and crystalline 

layers when growing the nanocrystalline materials. The transition region depends upon the 

hydrogen/silane ratio. The higher the dilution, smaller is the thickness of the transition layer. 

Therefore, to speed up the transition, often a seed layer is introduced at the start of the 

growth, made with very high H dilution. 
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Figure [4.21]: IVcurve showing 70% FF and Series resistance of27Q 

To study the influence of the seed layer on the device performance, a number of 

devices were made with and without seed layers. In particular, since the crystallinity should 

be improved with a seed layer, it should lead to less amorphous phase in the device, and 

therefore, a smaller voltage, but higher quantum efficiency at 800 nm, corresponding to 

higher absorption. Two devices were made with and two without the seed layer. 
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Figure [4.22]: Effect of seed layer on Voc and QE at 800nm. 
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The data for open circuit voltage and QE at 800 nm are shown for this twin set of 

devices in Figure [4.22]. It is very clear from this figure that having a seed layer leads to 

simultaneous lowering of voltage and increase in 800 nm QE, as expected. 

11. Controlling crystallinity and device properties by dilution with Helium (HE): 

The use of HE gas in the plasma offers another method for controlling crystallinity, 

and therefore device properties. HE is a more massive ion than H. Therefore, it should be 

more effective at transferring momentum to the growing lattice, and may improve 

crystallinity up to a point. Indeed, in companion work by my colleague, Nanlin Wang, he 

showed that chemical annealing with HE could transfer an amorphous film into a 

nanocrystalline film38. To explore the possibility offered by HE for control of crystallinity, a 

number of devices were made with varying flows of HE. Figure [4.23] shows the data on 

open circuit voltage and QE at 800 nm, both indicators of the degree of crystallinity. The x 

axis represents the % flow from the flow controller. Initially, the material does become more 

crystalline, as indicated by a decreasing voltage, and increasing QE at 800 nm. But at higher 

flows, the voltage begins to increase and the QE begins to decrease, indicting a more 

amorphous structure setting in. In Figure [4.24], we show the data for diffusion lengths in 

these same devices, and at first the hole diffusion length increases, and then, beyond 15% 

flow, abruptly decreases, the decrease being characteristic of a-Si: H. Thus, we have shown 

that it is possible to alter the device performance by controlling crystallinity with HE, 

offering another avenue for control. 

12. Influence of deposition temperature on device properties: 

It is known from previous work39 that deposition temperature has a strong effect on 

device performance. There could be several reasons for this effect. 

1. Crystallinity is a strong function of deposition temperature. As the temperature increases, 

in general, crystallinity increases, if all the other deposition parameters are kept invariant. 
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Effect of HE on crystallinity 
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Figure [4.23]: Addition of HE changing crystallinity in different ways 
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2. Oxygen content and doping: Lower temperatures have been shown to lower the doping 

density in the devices. 

The first factor would increase the current and decrease the voltage. The second factor would 

increase the current and fill factors, while the effect on voltage may not be as clear, since it 

would depend upon what happened to diffusion lengths and midgap defect densities. The 

previous work in the literature did not examine the effects of growth temperature on either 

defects or on diffusion length. In this work, we do so. 

13. Influence of oxygen on device properties: 

In Figure [4.25], we show the influence of deposition temperature on open circuit 

voltage and QE at 800 nm. The figure shows that Voc increases as the growth temperature is 

lowered, and the QE at 800 nm decreases. This is the case for both devices with and without 

seed layers. This is the expected result. 
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Figure [4.25]: Decreasing Temp leading to higher Voc 
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Figure [4.27] Doping & Defects Vs Temperature 

In Figure [4.26], we show the result on doping density measured using capacitance on 

the deposition temperature. Very clearly, the doping increases at the growth temperature 

increases. This has been ascribed in past to more efficient doping of ne-Si: H by oxygen40. In 
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Figure [4.27], we show the data for defect densities, also as function of growth temperature. 

Unlike the case for doping, now at first, the defect density seems to decrease, and at higher 

values of doping, increase with doping. Thus, there is no longer a 1:1 correlation with 

doping, unlike the previous case where all the devices ere made at one temperature. The 

reason for anomalous behavior at the lowest temperatures may lie in the material being much 

more amorphous, and therefore, higher defect densities characteristic of amorphous Si, which 

are characteristically in the range of 1016 cm'3 at these lowest temperatures. It is well known 

that in a-Si: H, the lowest defect density is obtained in the range 240-270 C, and lower 

temperatures lead to higher defects. This effect needs further work. 

14. Influence of baking of the reactor walls on defect densities: 

In order to reduce the residual oxygen levels, it was decided to bake out the walls 

prior to deposition. The substrate was loaded in the chamber and then silane-hydrogen 

plasma was done, keeping the shutter closed so nothing deposited on the substrate. The 

objective of the plasma layer (dummy layer) was to getter impurities in the rector. Then the 

walls were baked out for 4 hours at ~ 120 C under vacuum in the reactor. Then the walls 

were cooled down using fans. The base pressure in the reactor reduced to below 1E-7 Torr, 

an order of magnitude decrease, after such bake out and dummy layer. Then another dummy 

layer was done for 45 minutes with the sample heating up to the desired temperature, and 

then the device layer was grown. In Figure [4.28] below, we show the results for the 

measured doping density for two different sets of samples. Each set corresponds to a 

different silane/hydrogen ratio during the growth of the nanocrystalline Si layer. It is seen 

that in each case, the baking of the walls led to a significant decrease in the doping density. 

Thus, reducing oxygen content in the reactor is critical for reducing doping and therefore, 

defect densities. Clearly, the ideal reactor system would be a load-locked reactor with 

multiple chambers so the inside of the n layer chamber does not see moisture except during 

the rare cleaning stages. We did not have such a reactor available for our work. 
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Baking of walls on Doping in base layer 
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Figure [4.28]: Baking of reactor walls at 120C temperatures leading to lower oxygen 

15. Other data relevant to this work: 

While the above results are the ones that I obtained, I also provided samples to many 

other students for their complementary research projects. In particular, samples were 

provided to Dan Stieler for mobility measurements, and to Satya Saripalli for measurements 

of carrier lifetimes. Stieler measured electron mobilities using a n+nn+ geometry, and I was 

responsible for making some, though not all, n-type base layers. Saripalli measured hole 

lifetimes in the very same samples in which I had measured defect densities and diffusion 

lengths. He used a reverse recovery technique for measuring carrier lifetimes. The objective 

of the experiment was to see if the carrier lifetimes followed the inverse relationship to defect 

density, and by simultaneously measuring lifetime and diffusion length in the very same 

sample, one could obtain a measurement of carrier mobility, since diffusion length L and 

lifetime are related by the equation: 

L = sqrt (Dt) (4.2) 
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where D is the diffusion coefficient of the minority carrier and x is its lifetime. From 

the diffusion coefficient, one can evaluate mobility using the Einstein equation, 

[ D / n ]  = [kT/q] (4.3) 

The data for lifetime vs. defect density are shown in Figure [4.29], showing an 

approximate linear relationship, thus confirming that SRH model is the appropriate model for 

recombination in this material. The hole mobility deduced from the simultaneous 

measurements of diffusion length and lifetimes is plotted in Figure [4.30], as a function of 

doping. One obtains a value of approximately 1 cm2/V-s for hole mobility, in the same range 

as obtained recently by a group at Syracuse using time of flight techniques41. In contrast to 

their work, where they need a very low conductivity material, our technique allows for 

measurements in material with any doping, and is thus a superior technique. Also, we do not 

need to deconvolute difficult transient data, unlike their work. The mobility in Figure [4.30] 

is shown to decrease slightly with increasing doping. 

This is the first such measurement of carrier lifetimes and mobilities in this important 

material. 

Electron mobility in our materials was measured by Dan Stieler using space charge 

limited current techniques. His I-V data for one of our samples is shown in Figure [4.31], 

showing distinct ohmic and square law regimes, and the mobility deduced from the data is ~5 

cm2/V-s at 150 C . Further measurements on ours and other materials are in progress by him 
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CHAPTER 5 

CONCLUSIONS 

To conclude, a systematic study of fundamental material properties that affect device 

performance was undertaken in this work. The major results are as follows: 

1) Both donor and deep level defect densities were measured in devices. The effective 

doping was varied using ppm levels of B / P to reduce / increase the n-type native 

doping. A surprising result was that there was a one-to-one correlation between the 

donor density and the deep defect density for samples that had a significant degree of 

crystallinity. This fact implies that the same element, probably oxygen, is responsible 

for creating both doping and defects. 

2) The location of the traps was estimated using variable frequency capacitance 

techniques. The traps were found to be approximately 0.35 to 0.5 eV below the 

conduction band. This is the first time ever that both the density of defects and their 

energetic levels have been determined in this material in device-type structures. 

3) Lowering the growth temperature led to lowering of donor densities. St the lowest 

growth temperatures, the amount of amorphous phase in the device increased, and the 

one-to-one relationship between the doping and defect densities was changed. The 

defect density now increased, since low temperature amorphous phase is known to 

have a high density of defects. 

4) Lifetimes of minority carriers were measured in these very same devices, for the first 

time ever, by another student. A careful measurement of the defect densities by me 

and lifetimes by him revealed an inverse relationship between lifetime and defect 

density, suggesting that the SRH model for recombination was the dominant 

recombination mechanism. 

5) Diffusion length of holes (minority carriers) was measured in the devices using a 

quantum efficiency technique. The diffusion length was shown to be inversely related 
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to the defect density, once again proving that the recombination was trap controlled 

with the SRH model being valid. 

6) From the simultaneous measurement of diffusion length and lifetimes, one could 

estimate the mobility of holes in these devices. It was found to be in the range of ~ 1 

cm2/V-s. This is a new and relatively easy technique for measuring hole mobility, 

which is very difficult to measure using traditional methods such as time of flight. 

7) Various novel device designs were utilized to improve devices. One technique was 

the use of graded doping with B which was shown to significantly improve carrier 

collection by inducing an internal electric field which helped transport of carriers. 

8) Another novel technique to improve device performance was the use of an interfacial 

buffer or a-Si cap layer between the p+ and n layers. When appropriately designed, 

this buffer layer improved the open circuit voltage significantly. 

9) Series resistance at the ITO/oxide interface was shown to be a major contributing 

factor for loss in fill factor. An A1 buss-bar with annealing both by heat and with 

electrical drive-in reduced the series resistance by a factor of 2, and improved the fill 

factor to 69%. 

10) It was shown that the addition of He during deposition could improve the device 

properties by changing the crystalline/amorphous ratios in a controlled manner. 

11) It was shown that baking out of walls made a significant impact on the doping and 

defect densities, thus reiterating the important role of stray oxygen in introducing 

dopants and defects. It is recommended that a multi-chamber reactor be designed for 

further work. 
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FUTURE WORK 

1. Future work should include studies of other materials such as (Si,Ge) and (Ge,C) so 

that the best solar cell device structures can be made. 

2. Also methods for increasing the grain size while maintaining the low defect densities 

should be pursued. 

3. Multi-chamber with ultra high vacuum should be set up to make high quality ne-Si: H 

samples 

4. The relationship of these defects and crystallinity to some other measurements like 

Raman for devices and SIMS for oxygen in the samples should be studied. 
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APPENDIX A 

Solving the transport equation for the holes traveling in the n layer by diffusion and 

from the depletion width after electron hole pairs have been generated with the light shining 

on the p+n .n+ device from the p side and assuming negligible thickness for the p layer 

We get the following equation42. 

* u r  s  111„„„ur>;o - y - ,  r„ / m* ,  s  N ,  i  „ : _ u , y  
- 2  

d 
1 

Jp W = 1 TT^ï * ̂ [-p- +1] c°sh[—^—] - [exp(-oy0 )] * (—— cosh(—) + —- sinh(—)) 

exp(-oy)} 
(^/D^*smh(^) + cosh(ZL) 

L a  L f ,  
\ 

For y= y0, we get 

? r  *„ r  S  .  n  M *  ,_S \  

1 

J p ( y o )  = * {([-%- + !]- [exp(-qy0)] * (—— cosh(-S-) + —-sinh(-^)) 
1 -a 2Lj  

2 ccDp aDp Ld aLd Ld 

/D„)  +  s inh(^- )  +  cosh(^- )  
- exp  ( ~ a y Q ) }  

JP(^o) = qY
2T -2 *{(1- [exp(-oy0)] * sinh(-y^)) * exp(-qy0)} 

l - «  4  ^  ^  c o s h  A )  
V 

As we know a (absorption coefficient) is small for indirect band gap nc-Si at wavelength of 

900 nm and ccy0 is very small, we assume exp (- ay0 ) ~ equal to 1 

Here Ld is the total distance that the hole travels before getting collected which is equal to 

depletion width Wd and diffusion length of hole Lp. 
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As Quantum Efficiency = Jl (A,)/ qF( X) and solving the above equation we find that 

QE = a (Lp + Wd) 

only when thickness of n layer is bigger than the depletion width, surface recombination and 

thickness of p layer can be neglected. 
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ABSTRACT 

We report on the properties of nanocrystalline Si:H solar cells. The solar cells were of 

the p+nn+ type, with the n+ layer deposited first on a stainless steel substrates. The solar cells 

were prepared under high hydrogen dilution conditions using either ECR plasma deposition, 

or VHP diode plasma deposition processes. The deposition pressures were kept low, 5 mTorr 

in the ECR reactor and 50 mTorr in the VHP reactor. All the solar cells reported showed a 

high Raman ratio of crystalline to amorphous peaks. Properties such as dark current, deep 

level defects and shallow doping densities, and hole diffusion lengths were measured in these 

cells. It was found that the base layer was always n type, but that its doping could be changed 

by adding ppm levels of B during growth. A sufficient B doping even type converted the 

base layer to p type. It was found that there was a good one-to-one correlation between the 

shallow doping and deep level defects, suggesting that the same element, probably oxygen, is 

responsible for generating both shallow dopants and deep levels. The diffusion length of 

holes was measured in these cells using quantum efficiency vs. voltage techniques, and it was 

found that the diffusion length data could be explained very well by invoking trap-controlled 

recombination statistics. The dark I(V) curves could be represented by a standard diode 

model for highly crystalline materials, but as the degree of crystallinity was reduced, the 

diode factor increased. Voltage could be improved by reducing the crystallinity of the layer, 
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but doing so resulted in a decrease in quantum efficiency in the infrared regions of the solar 

spectrum. 

INTRODUCTION 

Nanocrystalline Si:H, with grain sizes of the order of 10-20 nm, is an attractive 

materials for solar energy conversion [1-5]. It is known that H is present in this material, 

mainly at the grain boundaries, and also, there may be a thin amorphous Si:H tissue 

surrounding the small grains [6]. The presence of hydrogen seems to passivate the grain 

boundaries, reducing recombination of minority carriers at the boundaries. Solar conversion 

efficiencies approaching 10% have already been achieved in this material system, and when 

combined with a-Si:H as a top cell, efficiencies in excess of 14% has been reported [1]. 

In this paper, we will investigate the device physics of nanocrystalline Si:H solar cells 

by measuring the fundamental properties of the materials in devices, and then correlating 

these properties with the expected device results. The properties measured include doping, 

deep level defects, hole diffusion length, and dark I(V) curves. 

FABRICATION OF DIAGNOSTIC DEVICES 

The diagnostic devices were of the p+nn+ type, with the n+ layer deposited first on a 

stainless steel substrate. No special back reflector was used. A transparent ITO contact was 

used on the p+ layer. Thin buffer layers were used at both the n+n and p+n interfaces to limit 

interface recombination [5,7 ]. The buffer layers were a-Si:H at the back (between n+ and n), 

and a thin, graded gap a-(Si,C):H layer at the p+n interface. The doped layers were deposited 

using the ECR process, whereas the undoped base layer, generally n type, was deposited 

using either the ECR process described previously, or a VHP diode process at 45 MHz. Care 

was taken to prevent cross-contamination between layers. For example, for the cells made 

using VHP process, two separate reactors, one for doped, and one for undoped layers, were 

used. The undoped base layer was deposited in two stages, a nucleation stage where a 

hydrogen/silane ratio of 20:1 was used, and a further stage where the ratio was reduced to 

12:1 to 14:1. Raman spectra were obtained on some of the devices, which clearly showed 

highly crystalline base layers, with a Raman peak ratio ( ratio of peak at 520 cm-i to the peak 

at 480 cm-i)of -3.8:1 or higher. 
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The growth temperature for the base layer was kept low, -300 °C, so as to preserve 

hydrogen bonding at both grain boundaries and in the a-Si:H tissue. Use of temperatures in 

excess of 350 °C generally resulted in a poorer device. 

RESULTS ON DIAGNSOTIC DEVICES 

Fig. 1 shows a typical I(V) curve for a device made using the VHF process without 

any special back reflector. The current density is 12 mA/cm2, the voltage is 0.47V and the fill 

factor is 0.65. The n layer thickness was -1.2 micrometer. The corresponding quantum 

efficiency curve is shown in Fig.2. 

BJ 3 ?£ti 6i5 

Fig. 1 I-V curve of diagnostic device Fig.2 QE of sample whose I-V curve is in Fig. 1 

MEASUREMENT OF DEFECT AND DOPING DENSITIES 

The devices were subjected to C-V measurements at various frequencies. In Fig. 3, 

we show the results of such measurements, plotted as I/C2 vs V at various frequencies. A 

feature to notice is that all 4 curves in the figure are approximately parallel at low voltages, 

but the curves at higher frequencies tend to saturate in reverse voltage, implying that the 

depletion depth in the base layer has reached the n+ contact. This behavior is easily explained 

by invoking Kimerling's model [8], where the data at low voltages correspond to the shallow 

state density (donor states), but the data at high voltages and low frequencies correspond to 

the sum of (doping + deep level) densities. From such considerations, we can evaluate the 

shallow-state (doping density) to be - 7.5 xlOis/cma, and the sum of shallow and deep state 

doping to be l.ôxlOie/cms. Thus, the deep state defect density is ~8.5xl0i5/cm3, in the same 
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range as the doping density. Such a correlation between deep states and donor states was also 

seen in the work of Lips et al [9], 

It was found that both donor and deep state densities could be varied by compensating 

with B. Upon adding B, donor density decreased, and so did the deep defect density. This 

relationship is shown in Fig. 4. This relationship implies that most likely, the same element is 

responsible for creating both donor and deep states. We speculate that this element is oxygen. 

The reason B reduces both shallow donors and deep defects is because it complexes with 

oxygen, removing its levels from the bandgap, in a way similar to its complexing with 

oxygen in crystalline Si. 
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Figure [3] Behavior of CV as a function Figure [4J: Deep level defect density vs. 

of frequency donor density. 

Note that the C-V curves plotted in Fig. 3 actually yield information about where in 

energy the deep levels are. The energetic position of the deep levels can be estimated by 

studying the frequency behavior. At the highest frequencies used (100 kHz), the capacitance 

curve saturates at about 0.7 V in reverse bias, which says that the depletion width has equaled 

the thickness of the n layer. The saturated capacitance value yields a n layer width of 0.55 

micrometer for this particular cell, in very good agreement with the width calculated from 

reflection data on the cell. If one now uses the doping density (7.5xl0i5/cm3), one obtains, at 

a reverse bias of 0.7 V, a depletion width of 0.53 micrometer (assuming a built-in voltage of 

0.8 V), in excellent agreement with the above two values. Thus, capacitance data shown in 

Fig. 3 is self consistent. The data also show that deep states have ceased to respond at 100 
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kHz. That fact gives us a value of (Ec-Et) of 0.35 eV as the upper limit for trap position. The 

lower limit can be evaluated from observing when the capacitance begins to decrease with 

frequency, which is shown in Fig. 5. From that figure, we conclude that the deepest states 

must have (Ec-Et) ~ 0.5 

eV. Both these numbers are calculated using the usual formula for attempt to escape 

frequency, v= vo exp[-(Ec- Et)/kT] where vo is ~lxl0n/sec. Using an upper estimate of vo 

(e.g. lxlOn/s) changes the numbers for the trap energy only slightly, given the logarithmic 

relationship between energy and vo. 

ii&oi i.ce-zc *, ce*:;, ire-y tcecs 
Irt 

Figure [5] Capacitance vs. Frequency at 0 bias 

MEASUREMENT OF DIFFUSION LENGTH OF HOLES 

The diffusion length of holes was measured using quantum efficiency vs. voltage 

techniques, in combination with capacitance-voltage measurements. It is known [10] that 

when aL «1 and t/L«l, where a is the absorption coefficient, and t the thickness of the 

undepleted base layer, and L the diffusion length , QE ~ a (wd + L). Here, wd is the depletion 

width. By applying a voltage, one changes the depletion width, which is determined from the 

low frequency capacitance value. By plotting relative QE signal, measured at 900 nm, vs. wd, 

the intercept gives an estimate of diffusion length. Such a measurement is shown in Fig. 6 for 

two cells, one with a high doping (and defect) density, and one with a low doping (and 

defect) density. The intercepts yield values of 0.57 and 1.2 micrometer for L for the two 

samples. The square of the measured diffusion length is plotted against 1/(defect density) in 

Fig. 7, and it shows a linear relationship over two orders of magnitude in defect density, as 
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expected from a simple trap-controlled recombination model, if we assume that the mobility 

value is relatively independent of doping, a reasonable assumption in small grained materials 

where mobility is mainly controlled by transport across grain boundaries. 
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Figure [6] Diffusion length estimatedfrom measurement Figure [7] Square of diffusion length vs. inverse 

of QE vs. voltage which changes diffusion length. of defect density 

MEASUREMENT OF DARK I-V CURVES 

We observed two distinct types of dark I-V behavior. In samples made using the ECR 

process, one almost always observed an I-V curve characteristic of a standard, two-region, 

exp(qV/2kT) and exp(qV/kT) type behavior. In contrast, in samples prepared using VHP, we 

observed a more homogeneous exp(qV/nkT) behavior, with n values around 1.5. See Fig. 8 

and 9. The differences can be traced to the different degrees of crystallinity between the films 

produced in the two reactors. The ECR reactor almost always produced films with a high 

degree of crystallinity (high Raman ratios, -6:1 or greater) whereas the VHP reactor 

produced films with a significantly lower degree of crystalline/amorphous ratio (3.5:1). 

When the sample becomes more amorphous, of course, the dark I(V) curve becomes 

dominated by a distribution of states in the bandgap, with a n factor approaching 1.5. The 

capacitance data for VHP samples clearly shows a distribution of states between 0.35 and 0.5 

eV below conduction band edge and so it is not a surprise that such samples do not show the 

classical n=l and n=2 I-V behavior. This conclusion is supported by examining the I-V curve 

for a sample whose crystallinity was deliberately degraded by adding He to the ECR reactor 

during growth. The resulting Raman signal showed a significantly increased shoulder at 480 
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cm-i compared to the sample produced without adding any He to the discharge. The resulting 

dark I-V curve had the same shape as the one shown n Fig. 9, confirming that it is the 

degradation of crystallinity which causes the dark IV curve to assume a non-ideal form. A 

consequence of the increase in amorphous phase is the increase in voltage, but a decrease in 

QE at 800 nm, as reported previously [5], 
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Figure [8] Dark IV of a sample prepared in 

ECR reactor showing two distinct exp (qV/2kT) 

and exp (qV/kT) behavior 

Figure[9] Dark IV of a sample prepare 

in VHF reactor showing single 

n factor. 

CONCLUSIONS 

In conclusion, this work has shown that there is a distribution of deep states in most 

nanocrystalline Si:H samples, located about 0.35 to 0.5 eV below the conduction band. There 

seems to be a distinct correlation between doping density and deeper defect densities. The 

transport of holes is controlled by diffusion, and the diffusion length can be related very well 

to the inverse of the deep state density. The defect density can be reduced by compensating 

with B, with a corresponding increase in diffusion length. The dark I-V curve depends 

greatly upon the degree of crystallinity of the sample, with highly crystalline samples 

producing classical two region dark I-V curves, but samples with a greater degree of 

amorphous phase producing I-V curves with a n factor closer to 1.5. 
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